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SUPERSONIC FLUTTER OF PANELS LOADED 

WITH INPLANE SHEAR 

James  Wayne Sawyer 
Langley Research Center 

SUMMARY 

A modal flutter analysis for biaxially loaded, orthotropic panels, using linear piston- 
theory aerodynamics, has been extended in o rder  t o  include the effects of inplane shear  
loading. Flutter boundaries for  shear  loads up to  buckling a r e  calculated for  simply sup- 
ported, isotropic panels of various length-width rat ios and for a square,  isotropic panel 
with elastic boundary conditions along the leading and trailirg edges. F o r  the simply sup- 
ported panels, the shear  loading is shown to  have a large  destabilizing effect when the 
buckling load is approached. For  such cases ,  the degradation in flutter resistance is 
comparable to  that exhibited by panels near buckling caused by biaxial loading. The out- 
of -plane flexibility of the boundary supports (deflectional springs) a t  the leading and t ra i l -  

ing edges is shown to  have a large destabilizing influence on the flutter of unstressed 

panels, but a t  the point of buckling the springs may be either stabilizing o r  destabilizing. 
The flutter boundaries were used to define conservative design curves. The sample cal-  
culations made with these design curves indicate that practical panels, which have other- 
wise been adequately designed, could become flutter cri t ical  if the inplane shear  loads 
approach the buckling value. 

INTRODUCTION 

Although a large body of flutter data is reported in the l i terature (see ref. I),  most 
panel flutter studies have ignored the effects of inplane shear  loading. However, with the 

advent of present day high performance aircraft  and reusable space venlcles, new surface 
structure designs have emerged which utilize shear-strength capability. For  example, 
the large cargo-bay door of the shuttle orbiter  is designed to transmit  loads through shear.  
Unfortunately, no experimental data exist on the flutter of panels loaded in inplane shear ,  
and the only analytical study available (see ref. 2) is limited to  simply supported, isotrqpic 
panels with small  length-width ratios. Therefore, an analytical study has been undertaken 

in order  to provide a better understanding of the effects of inplane shear on the flutter of 
panels. In the present investigation, a modal analysis for the flutter of biaxially loaded, 
orthotropic panels with flexible supports and using linear piston-theory aerodynamics i s  



extended to include the effects of inplane shear. Calculations a r e  made for simply sup- 
ported and spring-supported, isotropic panels with inplane shear loads up to the point of 
buckling in the presence of airflow. The resulting flutter boundaries a r e  used to define 
conservative, simple -to-use design curves. 

SYMBOLS 

Values a r e  given in both SI and U.S. Customary Units. The measurements were 
made in U.S. Customary Units. 

Fourier ser ies  coefficients (see eq. (12)) 

a panel length (x-direction) 

b panel width (y -direction) 

c free-stream speed of sound 

Dx panel bending stiffness in x-direction 

D~ panel bending stiffness in y-direction 

Dv panel twisting stiffness 

E modulus of elasticity of panel material 

ga aerodynamic damping coefficient (see eq. (13e)) 

gb bending structural damping coefficient 

g n ~  membrane structural damping coefficient 

h panel skin thickness 



Kd,Kr,Kt deflectional, rotational, and :.arsional spring constants, respectively, 
per unit length 

%,&,& nondimensional deflectional, rotational, and torsional spring constants, 
respectively (see eqs. (10)) 

- 
%bU 

value of -% for  inplane shear-buckling load in presence of airflow 

M Mach number 

m number of half -waves in x-direction 

Nx,Ny uniform inplane normal loads per  unit length in x- and y-direction, 
respectiveiy 

Nrcy uniform inplane shear  loads per  unit length 

n number of half -waves in y-direction 

P s e e  equation (3) 

9 dynamic pressure  of a i r s t ream 

r,S integers 

t t ime 

V potential energy 

w lateral  deflection of panel 

wmn lateral  deflection of panel describing shape of natural mode of vibration 

X function describing shape of natural mode of vibration in x-direction 



X ,Y Cartesian coordinates of panel (see fig. 1) 

Q! complex frequency 

('inn complex natural frequency 

P compressibility factor, \/M~ - 1 

>' panel mass per unit area 

17 nondimensional coordinate, y/b 

A cross-flow angle 

2qa3 dynamic -pressure parameter, - 
PD1 

o dynamic -pressure parameter at flutter for zero stress 

pX,py Poisson's ratio ill x- and y-direction, respectively 

5 nondimensional coordinate, x/a 

P free -stream air  density 

w frequency 

fundamental frequency of simply suppcrted beam (radians per sec), 
a 

Subscripts: 

In ,r number of half -waves in x-direction 

n,s number of half -waves in y -direction 

ANALYSIS 

Governing Equations 

A flutter analysis is presented which extends the analysis of reference 3 to include 

inplane shear loads. Because of the similarity of the two analyses, only equations o r  



solution procedures which differ from those presented in reference 3 are  discussed in 
detail. The panel and coordinate system shown in figure 1 is for a flat orthotropic panel 
with a supersonic flow at Mach number M at an arbitrary cross-flow angle over one 
surface. The panel edges at x = * a are supported by deflectional, rotational, and tor - 

2 
sicnal springs; the other two edges (y = 0, and b) are  simply supported. The panel is 
loaded by uniform inplane normal loads Nx and Ny (positive in compression) and by a 
uniform inplane shear load Nw. Aerodynamic loading is given by linear piston theory 
and includes aerodynamic damping. The governing equations can be developed using the 
virtual work of the system as  given by the following equation written in terms of nondi- 
mensional orthotropic panel properties. (This equation corresponds to the expression for 
the first variation of the potential energy in ref. 4): 

In equation (1), Kd, K,, and Kt are  the respective deflectional, rotational, and 
torsional spring constants per unit length; 

and 

+ pc 2 + Zr cos ,2 2 + a P = ' , -  j sin 1 1  - 
at2 4 pa 



After integration by parts equation (1) becomes: 

According to the principle of virtual work 6V must vanish, and, since 6w, 6 ( 2 ) ,  and 
5 ( . )  a re  independent and generally not zero, the coefficients of these terms must be 
zero independently. The coefficient in the double integral term set equal to zero is recog- 
nized a s  the governing equation, and the coefficient in the single integral terms set  equal 
to zero is recognized a s  the boundary conditions. 



Vibration Solution 

The flutter solution to equation (4) is based on a modal analysis which employs the 
natural modes and frequencies of the panel. These modes and frequencies can also be 
obtained directly from equation (4) after setting the aerodynamic pressure q equal to 
zero and assuming the following form for w: 

where 'Ymn i s  the complex damped natural frequency and wmn is the natural mode 
shape. Substituting equation (5) into equation (4) gives the following governing equation 
and boundary conditions: 



In equation (6), the structural  dan~ping has been included in the same manner a ;  in re fe r -  
ence 5 by multiplying each of the bending t e rms  by 1 + igb and each of the nienlbrane 
t e rms  by 1 + igm. The structural  damping considered in this manner was shown in ref - 
erence 6 to give good agreement with the experimental data. The spring constants have 
been nondimensionalized a s  follows: 

The inclusion of Nxy in equations (6) and (8) overly complicates the solution for 
natural modes and frequencies; therefore, these t e r m s  a r e  omitted for  simplicity. How- 
ever,  for the flutter solution, both Nxy t e r m s  (eqs. (6) and (8)) a r e  included in the gov- 
erning equation. (See the section entitled "Flutter Solution.") Equations (6) and (91, with 
Nxy = 0, a r e  identical to those solved in reference 3 and the method of solution is dis-  

cussed in detail therein. 

Flutter Solution 

A Galerkin-type flutter solution can be obtained using the natural mode shapes and 

frequencies and the following governing equation obtained from equation (4): 



The single integral term in the above expres s i~n  is a boundary term and does not usually 
appear in the governing equation. However, since the mode shapes employed in the flutter 
solution a re  defined with NXy = 0 (see section entitled "Vibration Solution"), they do not 
satisfy the boundary conditions of equation (8). Therefore, this term must be included a s  
a part of the governing equation. (See ref. 7 ,  p. 338.) 

The flutter (eq. (11)) call be solved by assuming a solution in the form 

where (2 is one of the complex frequencies. The flutter solution is obtained by substi- 
tuting equation (12) into equation ( l l ) ,  with wmn = Xmn sin nnq, multiplying through by 
Xrs sin snq, and integrating over the total area. Performing the integration and rear-  
ranging the terms result in the following set  of simultaneous equations: 

w m 

+ 
A cos 7 A Qmrns + A [I - (-I)sCn] 

rn Pmrns ms s2 ,n2  " r=l 

where 

1/2 axmn 
Qmrns = 



and 

For a nontrivial solution to equation (13a), the determinant of the coefficients of 
Am, must equal zero. A standard eigenvalue routine for a square complex matrix is 
used to calculate the eigenvalues a! of equation (13a); the values of ol render the deter- 

minant equal to zero. 

Flutter i s  considered to occur for the lowest value of the dynamic-pressure param- 
eter  A for which the imaginary part of one of the frequencies is greater than zero (no 
damping) o r  vanishes (damping). Certain combinations or  values of inplane loads (either 

Nx, N y 7  ard/or N , ~ )  result in the condirion for some value of h where both the real 
and the imaginary parts of the frequency vanish. This load condition is the buckling load 
in the presence of airflow for the panel. 

RESULTS -4ND DISCUSSION 

Range of Parameters 

Solutions of the flutter determinant resulting from equation (13a) were obtained for 
isotropic panels Dl = D2 = D ~ ~ )  with various length-width ratios subjected to inplane ( 
shear loads. The length-width ratios were varied between 0.5 and 5.0 with combinations 
of inplane shear loads Nxy and inplane normal loads Nx between 0 and the buckling 

load. In order to keep the variables to a reasonable number, the inplane normal loads Ny, - - 
the rotatienal and torsional spring supports Kr and Kt, respectively, and the flow angle 
12 were set  equal to zero for all calculations. Aerodynamic damping ga and structural 

damping in bending gb were varied over a realistic range. Membrane structural damp- 
ing gm was set equal to zero. 

Convergence 

Previous studies have shown that, for converged flutter solutions of unstressed pan- 
els ,  orrly one modal term is required in the cross-stream direction; the number of modal 

terms required in the flow direction depends on the panel orthotropy and the length-width 
ratio. However, when inplane shear loads a re  present, several modal terms are  required 
in each direction. This i s  evident in figure 2 where s.imple convergence results a r e  shown 
by plots of the dynamic-pressure parameter h against the panel frequencies for simply 



supporkd, isotropic panels with various inplane shear loads and for a /b  = 0.5 and 2.0 
(figs. 2(a) and 2(b), respectively). The p e ~ k  of the frequency loop represents the critical 
value of X for which flutter instability occurs. The data show large reductions in flutter 
stability with inplane shear loads; these reductions a r e  discussed in more detail in the 

next section. The curves shown were calculated using ten modal terms in the streamwise 
direction and four modal terms (10,4) in the cross-stream direction. Also shown in fig- 
ure 2 a r e  the flutter values calculated using (4,4) modes, represented by the circle sym- 
bols, compared with values published in reference 2 (using (4,4) modes), represented by 

the cross symbols. The data indicate that, for a /b  = 0.5 (see fig. 2(a)), converged 
solutions a r e  obtained when using (4,4) modal terms; however, for a / b  = 2.0 (see fig. 2(b)), 

(4,4) modal terms a re  not converged. Note in figure 2(b) that the flutter values calculated 
using (10,3) and (12,4) modal t e ~ i n s ,  representell by the square and diamond symbols, 

respectively, a re  essentially the same a s  the (10,4) results and so verify i-he convergence 
of the (10,4) mode solution Similar data obtained for plates with an a/b up to 5 indicate 
that (10,4) modal terms in the analysis give converged solutions. 

Effect of Inplane Shear 

Flutter of simply supported panels.- The effect of inplane shear loads on the flutter 
of simply supported, isotropic panels may be seen in figure 3 where flutter boundaries a r e  
shown a s  a function of Gy for a /b  values of 0.5, 1.0, 2.0, 3.0, and 4.0. Calculations 

a r e  made for the values of aerodynamic damping, ga = 0 and ga = 0.1, and of structural 
damping, gb = 0 to gb = 0.05. The termination point of the flutter boundaries, shown - 
by the circular symbols, corresponds to the value of Kw at which buckling occurs in the 

presence of airflow. The static buckling values of s,, a re  also shown by the square 
symbols in figure 3, and a re  in agreement with the values presented in reference 8. 

When the panel i s  loaded in inplane shear,  the critical value of X i s  lowered signif - 
icantly below the value for zero s t ress .  For a/b = 3.0 and a / b  = 4.0 (see figs. 3(d) and 

$(e)), certain values of E x  near buckling result in an anomalous condition of flutter for 
zero velocity. 'Ibis condition occurs for ga = gb = 0 and i s  a result of a shift in the 
order of the natural frequencies. The result is similar to the data shown in reference 5 
for  panels with inplane normal loads. Including the aerodynamic and the structural damp- 

ing in the calculations removes the X = 0 flutter condition. Usually the lowest two f re -  

quencies coalesce to define the flutter boundary. However, for certain values of Kxy 
and zero damping, the frequencies associated with the higher modes coalesce and result 
in unstable conditions which, subsequently, disappear a s  GY is either increased or  
decrcased. Such higher mode flutter conditions were discussed in detail in reference 2 

and were rat  considered valid flutter points. In addition, these higher mode flutter condi- 
tions can be removed by even a small amount of structural damping; thel'efore, they have 
been ignored in presenting the results contained herein. 



Flutter of panels on deflectional supports.- The influence of deflectional spring sup- 
ports on the flutter of square panels with inplane shear  loads and with g, = 0.1 and - 
%, = b.O1 may be seen in figure 4. Tn this figure, X is shown a s  a function of + 
for various values of Ed, the nnndimensional spring constant for uniform springs at the 
leading and trailing edges.  h he Ed = 0 represents f ree  edges) F o r  smal l  values of - 
Kw, decreasing the spring stiff-ess Ed results  in a large  reduciion in A. Decreasicg 
the Fd d s o  results  in ;. reduction of the buckling load with airflow. However, a t  the - 
point of buckling, decreasing the Kd may result  in ei ther lower (destabilizing) o r  higher 
(stabilizing) values of X . 

Flutter of panels with inplane normal loads and shear  loads.- The effects of inplane 
normal loads, in combination with shear,  on the flutter of simply supported panels with 

a/b = 1.0 and a/b = 4.0 are shown in figures 5(a) and 5(b), respectively, where values of 
A/A, a r e  shown 3s a function of ~ ~ p ~ ~ ~ .   he term Xo is the value of A of the 

unstressed panel and 
wbu 

is the s h e r r  buck1ir.g value when N, = 0 and with 

Curves a r e  presenkd for ga = 0.1, gb = 0.01, and f o r  NJNxy = 0,0.7, 3.0, and 5.0. As 
can be seen, increasing the normal loads resul ts  in a more  rapid reduction in X/ho as - 
K,@.%bu is increased. However, the minimum values of A / X ~ ,  o r  the values of i/ho 

a t  the point of buckling, a r e  not changed significantly by inplane normal loads. This con- 
dition is in contrast to the flutter results  obtained when Ny is added t o  panels loaded 
with N,. (See ref. 9.) It should be noted that, for a / b  = 4.0 (fig. 5(b)), the value of X 

fo r  flutter is a small  percentage of A. fcr values of Exy above 70 percent of the buck- 

ling value. 

Flutter of Panels Loaded to  Buclding 

Flutter design curves for shear.- In the design of panels for flutter it is desirable 
to have solutions which a r e  widely applicable and simple to  use. Also, since the actual 
flight-load conditions may not be well known, the designer may prefer to design against 
the most critical flutter condition. For  panels wlth inplane loads, the most severe  flutter 
conditions have been shown in the preceding sections tooccur a t  o r  near the point of 
buckling. 

The flutter boundaries for isotropic panels a t  the point of buckling in shear  a r e  pre- 
sented in figure 6 by the solid curves where values of X a r e  shown as a function of a /b  
for gb = 0.01 and gb = 0.04. The flutter boundaries do not vary monotonically with 

a h  for small  values of a / b  and gb but do, o r  tend to do so ,  a s  a /b  o r  g is b 
.ncreased. Although the flutter boundaries given by the solid curves in figure 6 may be 
used as a conservative design cr i ter ia ,  more simplified curves may be defined by the 
minimum points of the actual flutter boundaries such as shown by the dashed curves  in 



figure 6. Although these curves  are more conservative than necessary fo r  certain values 
of a / b  (near 1.25 and 2.75 for  gb = 0.01), thei r  simplicity should justify their u s e  in 
most practical design applications. 

Design curves  s imilar  to  the dashed curves  in figure 6 have been defined fo r  several  

values of gb and are presented in figure 7 by the solid curves,  where X is shown as a 
function of a / b  on a logarithmic scale. The resulting shear-load design curves are 
nearly parallel and, fr;r a/b X 2.0 and gb 2 0.01, they are a famil) of straight Lines that 
may be  approximated by the equation 

F o r  a/b 2 2.0, the above equation may be more &unservative than necessary. For  
gb 2 0.01, the design curves defined as abcve a r e  sc restr ict ive that f l ~ t t e r  boundaries 
s imilar  to the solid curves in figure 6 will probably need to  be used. 

The design curves obtained from reference 10 for simply supported, isotropic plates 

with inplane normal loads a r e  also shown in figure 7 by long dashed curves. The normal- 

load design curves (see ref. 10) were developed with a,% values up to  10.0, whereas the 

shear-load design curves were developed with values of a,& 5 5.0. Because of the large 
number of modal t e r m s  required for  converged flutter solutions when shear  loads a r e  

izL:.i?od, it is impractical to obtain flutter boundarie- for  a /b  values much above 5.0. 
However. because of the similarity of tile shear-load and normal-load design curves. it 
seems reasonable to expect the shear  design curves to be valid for values of a ,'b to 10. 

Although the ncrmal and rhear-load design curves show almost identical variations 
with a/b. the panels subjected to normal buckling loads will flutter at a lower value of A 

t\an will the same panels subjected to shear  buckling loads. Also, the panels subjected to  

a combination of inplane shear  and normal loads up to the point of buckling were shown 

(see the section entitled "Flutter cf panels with inplane normal loads and shear  l o a d s )  to 
experience flutter at approximately the same value of A a s  do the panels subjected to 
shear  buckling loads only. Thus, the normal-load design curves can be conservatively 
used for applications involving either inplane shear  o r  normal loads o r  combinations of 
these loads. 

The flutter design curves for shear  loading 2nd for gb = 0.01 a r e  presented in a 

different form in fibwre 8 where q/,3E is shov:n as a function of h 'b for panels with 
various length-width ratios. The shear design curves a r e  extended to a 'b - 10.0 bv 
the approximate equation (14) and a r e  shown by the dashed lines in figure 8. The result- 
ing curves show the effect that the ,%riel dimensions have on the flutter speed. Lncreas- 
ing the panel thickness h 'b and decreasing the length-width ratio a 'b both result in 
an increase in the flutter speed. For thin panels (bib small), the  panel length-width 



ratio a/b has very little effect on the flutter speed. For thick paneas (large h/b), 
increasing the panel length-width ratio results in a substantial reduction in the flutter 

speed- 

Application of shcv - design curves.- One of the early shuttle cargo-bay door designs -- 
consists of a thin aluminum skin reinforced with hat-section stiffeners, the Setails of w L &  
are shown in f i g u ; ~  9. The stiffeners were spaced 13.2 cm (5.2 in.) apart parallel to the 
flow; tbey terminate at fnmes spaced 58.4 cm (23 in.) apart t r z l ~ v e r s e  to the flow. The 
aluminurr skin, which is 0.076 cm (0.030 in.) thick, is covered externzlly with an  insula- 

tion material (not shown) for thermal protection &ring reentry. The most critical period 
of shuttle fliflt for panel flutter occurs &ring ascent when the 6oor h iu& t~rqiie !ads 
which, for the early design. cause local shear buckling in the thin aluminum skin, For flut- 

ter calcuLtions the effect of curvature should be small and the possible beneficial effects 
of the external insulation are neglected. Thus. consider the skin between stiffeners as an 
isotropic flat blate simply supported on all edges with a/b = 8.84 and k/b = 0.012. For  
these values. the cum-es in figure 8 give values of q,!dE of approaimately 12 x lo4 o r  a 

value 01 q '& for aluminum of approniniately 8.6 kPa (180 psf). Since the shuttle may 

esyerlence values of q ,'$ up to 48 kPa (1000 psi), local panel flutter could occur on a 

door surface with this design for inplane shear loads up to  Ule point of buckling. If h/b 
is doubl-4 without changing the ;.slue of a b, q for flutter would be increased by 
almost a factor of 8. which would provide an ample flutter margin. 

CONCLLiDIXG REMARKS 

A modal flutter analysis for biaxiallg loaded. orthotropic panels using iinear piston- 
theory aerodynamics has been extended in order to i nc lue  the effects d iwmne shear 
loading. Flutter boundaries for shear loads up to buckling a r e  calcuk:ed for simply sup- 
prted. ~ s o t r o ~ i c  panels of various length-width ratios and for a square. isotropic panel 
with eiastic boundary conditions along the leading and trailing edges. 

Convergence studies for panels with inplane shear showed that several modal terms 

a re  required in the cross-stream direction a s  well a s  in the streamwise direction. Thus, 
a large total number of modal ternis a r e  required for convergence. For  panels with 
aspect ratios above 5.0. the number becomes so  large that flutter calculatio~e by the 
normal-mode method a r e  impractical. 

For simply supported, i s~ t rop ic  plates. inplane shear loads have large destabilizing 

effecis and, when loaded to buckling, niay reduce the flutter dynamic pressure by approxi- 
mately the same anigunt a s  inplane normal buckling loads. Deflectional springs on the 
lending and trailing edges have a large destabilizing influence on the flutter of unstressed 
panels. but at the point cf buckling the springs may be either stabilizing o r  destabilizing. 



Flutter design curves were developed for panels loaded to buckling in shear. These 

curves show the flutter dynamic pressure, for panels with length-width ratios above 2.0, 
to be directly proportional to the structural damping and to the panel length-width ratio to 
the 2.6 power. Flutter design curves for buckling in inplane shear o r  combinations of 
'nplane shear and normal loads were found to be conservatively predicted by the design 
curves for panels buckled under inplane load N, alone. Calculations made for an early 
proposed design of the shuttle cargo-bag door indicate that practical panels, which have 
otherwise been adequately dee'qned, could become flutter critical if inplane shear loads 
approach the buckling value. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Harnpton, Va., January 22, 197 5. 
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Spring supported 

Figure 1 .- Panel geometry and coordinate system. 





Modes 

(b) a/b = 2.C. 

Figure 2. - Concluded. 
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(a) a/b = 0.5. 

Figure 3.- Flutter boundaries for simply supported, isotropic paneis with inplane shear. 
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Figure 3. - Continued. 
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Figure 3.- Continued. 
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(d) a/b = 3.0. 

Figure 3. - Continued. 



0 Buckling with oirf low 
0 Static buckling 

I6O0 t No flutter 

(e) a/b = 4.0. 

Figure 3. - Concluded. 
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Figure 4 . -  Effect of leading- and trailing-edge deflectior,~l spring supports on flutter 
boundaries for square panels with inplane shear gb = 0.01; ga = 0.1. 
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Figure 5.-  Flutter boundaries for simply supported, isotropic panels with inplane 
shear and normal loads. xy/NW = 0; ga = 0.1; and gb = 0.01. 
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Figure 5. - Concluded. 



Figure 6.- Influence of length-width ratio on flutter of simply supprted, 
isotropic panels loaded to buckling in inplane shear. 
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Figure 7 . -  F!utter design curves for simply supported, isotropic panels loaded to buckling. 



Flutter 

Figure 8.- Flutter design curves for simply supported, isotrtpic panels loaded 
to buckling in shear a s  a function of panel geometry. gb = 0.01. 



doors 

Flgure 9.- Detail sketch of one of the early shuttle cargo-bay door designs. 


